فصل هشتم ریاضی نهم

درس اوّل: حجم و مساحت کره 

درس دوم: حجم هرم و مخروط

درس سوم: سطح و حجم

از دوران یک نیم دایره حول قطر آن، یک کره بوجود می آید.

کره، مجموعه نقاطی از فضاست که همه آن نقطه ها از یک نقطه به نام مرکز به یک فاصله ثابت و مشخص هستند. به این اندازه ثابت، شعاع کره می گویند

حجم و مساحت اشکال هندسی

حجم و مساحت کره:

1-حجم کره ای با شعاع R از رابطه زیر بدست می آید: 

حجم و مساحت اشکال هندسی
2- مساحت کره ای با شعاع R از رابطه زیر بدست می آید:
حجم و مساحت اشکال هندسی

2- استوانه

از دوران مستطیل حول اضلاع آن، استوانه بدست می آید. در این صورت قاعده آن به شکل دایره خواهد شد. و شعاع دایره همان شعاع استوانه خواهد بود.

حجم و مساحت اشکال هندسی

حجم استوانه : اگر شعاع استوانه r باشد و بلندی آن h، آنگاه حجم آن برابر خواهد بود با:

حجم و مساحت اشکال هندسی

مساحت جانبی استوانه = محیط قاعده × ارتفاع حجم استوانه = مساحت قاعده × ارتفاع

سطح کل استوانه = سطح دو قاعده + مساحت جانبی ( مساحت مجموع دو قاعده + ارتفاع × پیرامون قاعده )

در شکل روبرو کره را طوری درون استوانه قرار داده ایم که کره کاملاً از بالا و پایین و اطراف بر استوانه مماس شده است. 

در این حالت می گوییم کره در استوانه محاط شده است. استوانه نیز بر کره محیط شده است. 

حجم و مساحت اشکال هندسی

شعاع قاعده استوانه برابر R و ارتفاع آن برابر 2R است. 

در نتیجه 

حجم و مساحت اشکال هندسی

حجم و مساحت اشکال هندسی

 با استفاده از حجم کره و استوانه می توان گفت که حجم استوانه یک و نیم برابر حجم کره است. 

3- مخروط

از دوران مثلث قائم الزاویه حول هر یک از اضلاع قائمه یک مخروط بدست می آید.  

حجم و مساحت اشکال هندسی

حجم مخروط: اگر شعاع قاعده مخروط r باشد و ارتفاع آن h، آنگاه حجم آن برابر خواهد بود با:

حجم و مساحت اشکال هندسی

مثال: یک مثلث قائم الزاویه با اضلاع قائمه 4 و 15 را حول ضلع قائمه بزرگتر دوران می دهیم. حجم شکل حاصل را بدست آورید.

حجم و مساحت اشکال هندسی

 

 

تعریف هرم

 

هرم یک چندوجهی است که همه وجه‌ های آن به جز یکی در یک راس مشترکند. ارتفاع  هرم پاره خطی است که از راس هرم بر قاعده آن عمود می‌شود. وجهی از هرم که راس هرم در آن قرار ندارد قاعده و وجه‌های دیگر وجه‌های جانبی نامیده می‌شوند. وجه‌های جانبی همواره به شکل مثلث هستند . به هر یک از مثلث هایی که در یک نقطه همدیگر را قطع می کنند، وجه جانبی هرم می گویند.

حجم و مساحت اشکال هندسی

هرم منتظم: اگر چندضلعی قاعده یک چندضلعی منتظم بوده و وجه های جانبی با هم همنهشت باشند، هرم را منتظم می گویند.

حجم هرم

حجم هرم با مساحت S و ارتفاع h  برابر است با:

حجم و مساحت اشکال هندسی

مثال: قاعده هرمی مثلث قائم الزاویه با اضلاع قائمه 6و 15 است. اگر حجم هرم برابر 240 باشد ، طول ارتفاع هرم را بیابید.

حجم و مساحت اشکال هندسی

 

نکته:

مخروط شکلی شبیه هرم منتظم است که قاعده آن به شکل دایره و پای ارتفاع در مرکز دایره است.

حجم و مساحت اشکال هندسی

 

برای تهیه پاورپوینت های آموزشی کتاب ریاضی نهم دکمه زیر را انتخاب نمایید

JTBBJTNDZGl2JTIwaWQlM0QlMjIxMzM0MjMyODA4MCUyMiUzRSUzQ3NjcmlwdCUyMHR5cGUlM0QlMjJ0ZXh0JTJGSmF2YVNjcmlwdCUyMnNyYyUzRCUyMmh0dHBzJTNBJTJGJTJGd3d3LmFwYXJhdC5jb20lMkZlbWJlZCUyRk5odjkzJTNGZGF0YSU1QnJuZGRpdiU1RCUzRDEzMzQyMzI4MDgwJTI2ZGF0YSU1QnJlc3BvbnNpdmUlNUQlM0R5ZXMlMjIlM0UlM0MlMkZzY3JpcHQlM0UlM0MlMkZkaXYlM0U=

مطالعه بیشتر

   راهنمای خرید:
  • لوح های فشرده در اولین روزکاری بعد از ثبت سفارش ، ارسال می شوند
  • لینک دانلود فایل بلافاصله بعد از پرداخت وجه به نمایش در خواهد آمد.
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد با دقت بررسی کنید.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید از طریق صفحه تماس با ما یا تلگرام و واتس اپ پیام ارسال کنید .

پاسخی بگذارید

نشانی ایمیل شما منتشر نخواهد شد.